

GCE

Mathematics

Advanced GCE

Unit 4734: Probability and Statistics 3

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

1 (i)	E(S)=22	B1		
	Var(S)=E(S)	B1	2	
(ii)	$E(T) = \frac{1}{2} \times 5 - \frac{1}{4} \times 4 = 1.5$	B1		H. W. W. W. C. W.
	$Var(T) = \frac{1}{4} \times 5 + \frac{1}{16} \times 4$ = 1.5 = E(T) AG	M1 A1	3	Using $Var(aX+bY)$ CWO
(iii)	T only does not have a Poisson distribution	B1		Unless wrong reason
()	Some values of <i>T</i> are EITHER negative		•	
	OR: fractional	B1	2 (7)	
2 (i)	Use $(^{6}/_{80})(^{74}/_{80})/80$	B1 M1		Or /79 s of the form $\sqrt{(p_s q_s/80)}$ (or 79) or no $$
	$p_s \pm zs$ $z = 1.96$	B1		s of the form $\sqrt{p_s q_s/80}$ (or 79) of no \sqrt{s}
	(0.0173, 0.1327)	A1	4	Accept (0.017,0.133)
(ii)	Use $z\sqrt{(p_sq_s/n)}$	M1		or no √
	≤ 0.05 $n \geq 106.6$, least is 107	A1 A1	3	and z=1.96 .Or = Allow 110
(iii)	e.g Variance is an estimate OR Distribution of p_s is only approx normal	B1	1	Not var unknown Must state distribution of what.
	Distribution of p _S is only approx normal	<i>D</i> 1	(8)	Trust state distribution of what.
3 (i)	$\int_0^1 ax dx + \int_1^2 a(x-2)^2 dx = 1$	M1		
	$\left[\frac{ax^2}{2} \right]_0^1 + \left[\frac{a(x-2)^3}{3} \right]_1^2$	В1		With or without limits
	$\begin{vmatrix} 1 & 2 & 3 & 1 \\ \frac{1}{2}a & +\frac{1}{3}a & = 1 \end{vmatrix}$	M1		Correct method for equation
	$a = {}^{6}/_{5}$	A1	4	with fractions/decimals
()				
(ii)	EITHER: $\int_0^1 ax dx + \int_1^{1.5} a(x-2)^2 dx$	M1		Any a
	OR $1 - \int_{1.5}^{2} a(x-2)^2 dx$			
	$= {}^{19}/_{20}$	A1	2	AEF
(iii)	$\int_{0}^{1} ax^{2} dx + \int_{1}^{2} ax(x-2)^{2} dx$	M1		
	$= \left[\frac{ax^3}{3}\right]_0^1 + \left[a(\frac{x^4}{4} - \frac{4x^3}{3} + 2x^2)\right]_1^2$	B1		AEF With or without limits
	=9/10 (Expected monthly demand = 900)	A1	3 (9)	AEF

4 (i)	2608p	M1		p from Poisson
4(1)	$p = e^{-3.87}3.87^6/6! \times 2608 = 253.82$	A1		From 253.8 or 254 seen
	p c 3.0770: (~2000 233.02)	711		110111 233.0 01 234 30011
	$(273-253.82)^2/253.82$	M1		
	=1.449	A1	4	Answer between 1.445 and 1.460
(ii)	Number of cells – 1 (estimated mean) – 1(same totals)	B1	1	Not 11-1
(iii)	H ₀ : A Poisson distribution fits the data			For both hypotheses
,	H ₁ : A Poisson distribution does not fit the data	B1		
	CV = 15.99	B1		Their CV
	13.0 < CV and do not reject Ho	M1		Sufficient evidence that
	accept that there is insufficient evidence that a			Poisson distribution fits data, OK
	Poisson distribution does not fit data	A1	4	,
			(9)	
5 (i)	4 1 1		(-)	
(1)	Solve $\frac{4}{3}(1-\frac{1}{m^2})=\frac{1}{2}$	M1		
	5 <i>m</i> 2			
	Giving $m = \sqrt{\frac{8}{5}}$	A1	2	Or equivalent. 1.26, 1.265, $2\sqrt{10/5}$
	ν 5	111	_	
(ii)		M1		Or: $x=1/\sqrt{y}$,
	$G(y) = P(Y \le y)$ or <	A1		$ dx/dy = 1/(2y^{3/2})$ B1
	$= P(X \ge 1/\sqrt{y})$	M1		$f(x)=8/(3x^3)$; $1 \le x \le 2$ M1A1
	$=1-F(1/\sqrt{y})$	A1		g(y)=f(x) dx/dy M1
	$= 1 - \frac{4}{3}(1-y)$ or $(4y-1)/3$	B1		=4/3 A1
	$1 \le 1/\sqrt{y} \le 2 \Longrightarrow \frac{1}{4} \le y \le 1$	<i>D</i> 1		1/4≤y≤1 B1
				/* <u>_</u> y_1
	$g(y) = \begin{cases} 4/3 & 1/4 \le y \le 1, \\ 0 & \text{otherwise.} \end{cases}$	B1√	6	$\operatorname{Ft} G(y)$
	$g(y) = \begin{cases} 0 & \text{otherwise.} \end{cases}$	DI (Ū	11 30)
(iii)				
()	EITHER: E(2-2 <i>Y</i>)	M1		
		A1v	1	$\sqrt{g(y)}$
	$= 2 - 2 \times^{5} /_{8}$ $= {}^{3} /_{4}$	A1		CAO AEF
	OR $2 - \int_{1}^{2} 16/(3x^{5}) dx$ OR $\int_{1}^{2} (2-2/x^{2}))(8/3x^{3}) dx$	M1		From 2 - $\int xF'(x)dx$
	$= 2 + [4/(3x^4)] = [-8/(3x^2) + 4/(3x^4)]$	A1		$\sqrt{f(x)}$
	= 3/4 $= 3/4$	A1	3	CAO AEF
		111	(11)	
			()	
6 (i)	$s^2 = (68636.41 - 2605^2/100)/99 (=7.84)$	B1		AEF
	$\overline{x} = 26.05$	B1		
	$26.05 \pm zs/10$	M1		
	$z = 2.326$ or $\Phi^{-1}(0.99)$	B1		Allow t(99)=2.365
	ART (25.4, 26.7)	A1	5	
(ii)	Use N(26.05,7.84)	M1		s^2 from (i) M0 for 7.84/100
()	$P(\ge 30) = 1 - \Phi([30-26.05]/\sqrt{7.84})$	M1		No "cc"
	= 0.0792 = 7.92%	A1	3	allow either; ART 0.08 or 8%
(iii)	Use $B_1 - B_2 \sim N(0, 15.68)$	M1		With $\mu = 0$
	22-1 22 1 (0, 10.00)	A1		For variance σ^2
	$P(<5) = \Phi(5/\sigma)$	A1		Their σ ; $\Phi(\pm 5/\sigma) => M1$
	= 0.897	A1	4	,,
(iv)	(i) only since sample size of 100 is large enough			Must be clear which part and
(,	(for CLT to hold)	В1	1	with correct reason.
	(101 ODI to nota)		(13)	
			(10)	1

7 (i)	For each student the scores are correlated	B1 1	Or equivalent, eg paired
(ii)	Increase in score has a normal distribution Sample is considered to be a random sample of all	B1	Allow pop of differences~ normal Or equivalent, allow independent
	students attending the course	B1	or equitation, union muspenium
	H_0 : $\mu_D = 0$, H_1 : $\mu_D > 0$ where D = increase in scores D= 10 2 12 -3 18 10 11 6 14 9	B1 M1	Or H ₀ : $\mu_1 = \mu_2$ H ₁ : $\mu_{1} < \mu_{2}$: not $\mu = 0$ D may be implied
	$\overline{D} = 8.9$ $s^2 = 35.88$	B1 B1	
	Test statistic = $8.9/(s/\sqrt{10})$ = 4.699	M1 A1	Must involve 10 Allow ART 4.70
	v = 9, CV = 3.25 4.699 > CV	B1	Or P(<i>t</i> >4.699)=0.00056<0.005
	Reject H_0 and accept that there is sufficient evidence a at the $\frac{1}{2}$ % significance level of an increase in mean scores.	M1 10	Not OA
	SR 2-sample test: (i)B0(ii)B0B1B1M0 Max 2/11		
(iii)	Test statistic = $(8.9-5)/\sqrt{3.588}=2.059$ This is significant of an increase at the 5% significance level (CV of 1.833) so director's claim is supported.	M1A1 M1 A1 4 (15)	Or P(t>2.059)=0.035 Any reasonable significance level with corresponding conclusion
	SR 2-sample t-test. (8.9-5)/s M1 Max1/4 SR: Use of confidence intervals 99% C I 2-sided (2.74,15.1): 99.5% 1-sided (2.74, ∞)	M1A1 M1	Allow at ½ %
	5 is in this interval so not significant at ½ % level A1 OR 90% CI 2-sided (5.43,12.37); 95% 1-sided (5.43, ∞) 5 not in this interval so significant at 5% SL	A1 M1A1 M1 A1	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge **CB1 2EU**

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 **OCR** is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552

Facsimile: 01223 552553

